Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking.

نویسندگان

  • L Hornekaer
  • E Rauls
  • W Xu
  • Z Sljivancanin
  • R Otero
  • I Stensgaard
  • E Laegsgaard
  • B Hammer
  • F Besenbacher
چکیده

We present scanning tunneling microscopy experiments and density functional theory calculations which reveal a unique mechanism for the formation of hydrogen adsorbate clusters on graphite surfaces. Our results show that diffusion of hydrogen atoms is largely inactive and that clustering is a consequence of preferential sticking into specific adsorbate structures. These surprising findings are caused by reduced or even vanishing adsorption barriers for hydrogen in the vicinity of already adsorbed H atoms on the surface and point to a possible novel route to interstellar H2 formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translational energy and state resolved observations of D and D2 thermally desorbing from D clusters chemisorbed on graphite.

Direct D atom desorption, as well as associative desorption of D(2) molecules are observed in thermal desorption from D atoms chemisorbed on a C(0001) surface by combining laser induced T-jumps with resonance enhanced multiphoton ionization detection. Bleaching curves suggest that different classes of chemisorbed D atom clusters are present on the initial surface. The energy resolved atomic des...

متن کامل

Quantum studies of H atom trapping on a graphite surface.

The trapping and sticking of H and D atoms on the graphite (0001) surface is examined, over the energy range of 0.1-0.9 eV. For hydrogen to chemisorb onto graphite, the bonding carbon must pucker out of the surface plane by several tenths of an angstrom. A quantum approach in which both the hydrogen and the bonding carbon atoms can move is used to model the trapping, and a potential energy surf...

متن کامل

Understanding adsorption of hydrogen atoms on graphene.

Adsorption of hydrogen atoms on a single graphite sheet (graphene) has been investigated by first-principles electronic structure means, employing plane-wave based periodic density functional theory. A 5 x 5 surface unit cell has been adopted to study single and multiple adsorptions of H atoms. Binding and barrier energies for sequential sticking have been computed for a number of configuration...

متن کامل

Site specificity in femtosecond laser desorption of neutral H atoms from graphite(0001).

Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms^{-1} for H and ...

متن کامل

Oxygen adsorption on Pt/Ru(0001) layers.

Chemical properties of epitaxially grown bimetallic layers may deviate substantially from the behavior of their constituents. Strain in conjunction with electronic effects due to the nearby interface represent the dominant contribution to this modification. One of the simplest surface processes to characterize reactivity of these substrates is the dissociative adsorption of an incoming homo-nuc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 97 18  شماره 

صفحات  -

تاریخ انتشار 2006